
ECS-3X8, 2X6, 1X5 32.768 KHz TUNING FORK CRYSTALS

ECS tuning fork type crystals are used as a clock source in communication equipment, measuring instruments, microprocessors and other time management applications. Their low power consumption makes these crystals ideal for portable equipment.

FEATURES

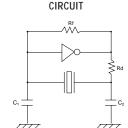
- Cost effective
- Tight tolerance
- Long term stability
- Excellent resistance and environmental characteristics

PART NUMBERING GUIDE "EXAMPLE"

		FREQUENCY		LOAD CAPACITANCE		PACKAGE TYPE*	
ECS	-	.327	-	12.5	-	8	
ECS	-	.327	-	12.5	-	13	
ECS	-	.327	-	8	-	14	

* Package type examples (8=3x8, 13=2x6, 14=1x5)

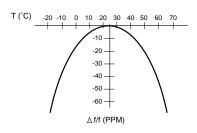
OPERATING CONDITIONS/ELECTRICAL CHARACTERISTICS


PARAMETERS		ECS-3X8	ECS-2X6	ECS-1X5	UNITS		
NOMINAL FREQUENCY	Fo	32.768	32.768	32.768	KHz		
FREQUENCY TOLERANCE $\Delta f/fo$		±20 ±20		±20	PPM		
LOAD CAPACITANCE (typ.) CL		12.5	12.5 8.0		pF		
DRIVE LEVEL (max.) DL		1	1	1	μW		
RESISTANCE AT SERIES RESONANCE R1		35 (max.)	35 (max.)	40 (max.)	KΩ		
Q-FACTOR	Q	90,000 (typ.)	70,000 (typ.)	80,000 (typ.)			
TURNOVER TEMPERATURE	T _M	+25 ±5	+25 ±5	+25 ±5	°C		
TEMPERATURE COEFFICIENT	ß	-0.040ppm/°C ² max.	-0.040ppm/°C ² max.	-0.040ppm/°C ² max.	$PPM/(\Delta C^{\circ})$		
SHUNT CAPACITANCE	Co	1.60 (typ.)	1.35 (typ.)	1.00 (typ.)	pF		
CAPACITANCE RATIO		460 (typ.)	450 (typ.)	400 (typ.)			
OPERATING TEMP. RANGE	TOPR		°C				
STORAGE TEMP. RANGE T _{STG}			°C				
SHOCK RESISTANCE		Drop test 3	PPM				
INSULATION RESISTANCE	IR		MΩ				
AGING (FIRST YEAR)	Δf/fo	±3 PPM max. @ +25°C ±3°C					
MOTIONAL CAPACITANCE	C ₁	0.0035 (typ.)	0.0030 (typ.)	0.0025 (typ.)	pF		

Note: Contact factory for optional load capacitance.

PACKAGE DIMENSIONS (mm)

RECOMMENDED OSCILLATION



ELECTRICAL CHARACTERISTICS IC: TC 4069P Rf: $10M\Omega$ Rd: $330K\Omega$ (As required)

 $C_1 = 22pF, C_2 = 22pF$ $V_{DD} = 3.0V$

In this circuit, low drive level with a maximum of 1µW is recommended. If excessive drive is applied, irregular oscillation or quartz element fractures may occur.

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature. For example: What is the stability at 45°C?

1) Change in T ('C) = 45 -25 = 20'C 2) Change in frequency = -0.04 PPM x $(\Delta T)^2$ = -0.04 PPM x $(20)^2$ = -16.0 PPM

ECS, INC. INTERNATIONAL 1105 S. RIDGEVIEW, OLATHE, KS 66062 • 913-782-7787 • 800-237-1041 • FAX 913-782-6991 • WWW.ECSXTAL.COM